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Abstract

The dark matter in the universe can be in the form of a superheavy matter species (wimpzilla).

Several mechanisms have been proposed for the production of wimpzilla particles during or im-

mediately following the inationary epoch. Perhaps the most attractive mechanism is through

gravitational particle production, where particles are produced simply as a result of the expansion

of the universe. In this paper we present a detailed numerical calculation of wimpzilla gravi-

tational production in hybrid-ination models and natural-ination models. Generalizing these

�ndings, we also explore the dependence of the gravational production mechanism on various

models of ination. We show that superheavy dark matter production seems to be robust, with


Xh
2 � (MX=10

11GeV)2(TRH=10
9GeV), so long as MX < HI , where MX is the wimpzilla mass,

TRH is the reheat temperature, and HI is the expansion rate of the universe during ination.

PACS numbers: 98.80.Cq, 95.35.+d, 4.62.+v; FERMILAB-Pub-01/047-A; MCTP-01-16; hep-ph/0104100
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I. INTRODUCTION

The case for dark, nonbaryonic matter in the universe is today stronger than ever [1].

The observed large-scale structure suggests that dark matter (DM) accounts for at least 30%

of the critical mass density of the universe �C = 3H2
0M

2
P l=8� = 1:88 � 10�29 g cm�3, where

H0 � 100h km sec�1 Mpc�1 is the present Hubble constant and MP l is the Planck mass.

Despite this compelling evidence, the nature of the DM is still unknown. Some funda-

mental physics beyond the Standard Model (SM) is certainly required to account for the cold

and slowly moving particles, X, composing the the bulk of the nonbaryonic dark matter.

The most familiar assumption is that dark matter is a thermal relic, i.e., it was initially

in chemical equilibrium in the early universe. A particle species, X, tracks its equilibrium

abundance as long as reactions which keep the species in chemical equilibrium can proceed

on a timescale more rapid than the expansion rate of the universe, H. When the reaction

rate becomes smaller than the expansion rate, the particle species can no longer track its

equilibrium value. When this occurs the particle species is said to be \frozen out." The

more strongly interacting the particle, the longer it stays in local thermal equilibrium and

the smaller its eventual freeze-out abundance. Conversely, the more weakly interacting

the particle, the larger its present abundance. If freeze out occurs when the particles X are

nonrelativistic, the freeze-out value of the particle number per comoving volume Y is related

to the mass of the particle and its annihilation cross section (here characterized by �0) by

[2] Y / (1=MXMP l�0) where MX is the mass of the particle X. Since the contribution to


X = �X=�C is proportional to MXnX , which in turn is proportional to MXY , the present

contribution to 
X from a thermal relic roughly is independent of its mass and depends

only upon the annihilation cross section. The cross section that results in 
Xh
2 � 1 is of

order 10�37cm2, which is of the order the weak scale. Many theories beyond the SM, e.g.

supersymmetric theories, have stable particles with weak-scale annihilation cross sections,

and provide candidate weakly interacting massive particles (wimps).

The simple assumption that dark matter is a thermal relic limits the maximum mass of

the DM. The largest possible annihilation cross section is roughly M�2
X . This implies that

very massive wimps would have such a small annihilation cross section that their present

abundance would be too large. Thus, one expects a maximum mass for a thermal wimp,

which turns out to be a few hundred TeV [3].
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One should note that the computation of the �nal abundance of the thermal relics assumes

that the largest temperature of the universe was larger than the relic massMX. The thermal

history of the universe before the epoch of nucleosynthesis is unknown, and the maximum

temperature in the radiation-dominated phase, dubbed the reheating temperature (TRH),

might have been smaller than the mass of the wimp. In such a case, the dependence of the

present abundance on the mass and the annihilation cross section di�ers from familiar results

because of the new parameter TRH [4]. This drastically changes the cosmologically allowed

parameter space of supersymmetric models and re-establishes SM neutrinos as possible dark

matter candidates [5].

While a thermal origin for wimps is the most common assumption, it is not the simplest

possibility. It has been recently pointed out that DM particles might have never experienced

local chemical equilibrium during the evolution of the universe, and that their mass may be

in the range 1012 to 1019 GeV, much larger than the mass of thermal wimps [6, 7, 8, 9].

Since these wimps would be much more massive than thermalwimps, such superheavy DM

particles have been called wimpzillas [9].

Since wimpzillas are extremely massive, the challenge lies in creating very few of them.

Several wimpzilla scenarios have been developed involving production during di�erent

stages of the evolution of the universe.

wimpzillas may be created during bubble collisions if ination is completed through a

�rst-order phase transition [10, 11]; at the preheating stage after the end of ination with

masses easily up to the Grand Uni�ed scale of 1015GeV [12] or even up to the Planck scale

[13]; or during the reheating stage after ination [8] with masses which may be as large as

2� 103 times the reheat temperature.

wimpzillasmay also be generated in the transition between an inationary and a matter-

dominated (or radiation-dominated) universe due to the \nonadiabatic" expansion of the

background spacetime acting on the vacuum quantum uctuations. This mechanism was

studied in details in Refs. [6, 14] in the case of chaotic ination. The distinguishing feature

of this mechanism is the capability of generating particles with mass of the order of the

inaton mass (usually much larger than the reheating temperature) even when the particles

only interact extremely weakly (or not at all) with other particles, and do not couple to the

inaton.

While the results depend weakly on details such as whether the wimpzilla is a fermion
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or a boson, or whether it is conformally or minimally coupled to gravity, for the most part


X � 1 when the mass of the wimpzilla is approximately the order of the inaton mass.

Since hybrid ination models have (at least) two mass scales and more coupling constants

than chaotic ination models, it is worthwhile to study wimpzilla production in hybrid

models [15].

In this paper we study the gravitational production of wimpzillas after the completion

of a stage of hybrid ination. The hybrid scenario involves two scalar �elds, the inaton

�eld �, and the symmetry-breaking �eld �. Models are parameterized by di�erent mass

scales and couplings for the two �elds. During ination the inaton �eld � rolls down along

a at potential while the �eld � is stuck at the origin, providing the vacuum energy density

driving ination. However, when � becomes smaller than a critical value, �c, both �elds roll

down very quickly towards their present minima, completing the inationary phase. It is

exactly during this phase the gravitational generation of wimpzillas may occur.

If the wimpzillas are produced at the end of ination, the fraction of the total energy

density of the universe in wimpzillas today is given by


Xh
2 � 
Rh

2
�
TRH
T0

�
8�

3

�
MX

MP l

�
nX(te)

MP lH2
I

; (1)

where HI is the expansion rate of the universe at the end of ination. Here, 
Rh
2 �

4:31 � 10�5 is the fraction of critical energy density in radiation today, T0 is the present

temperature of radiation, and nX(te) is the density of X particles at the time when they

were produced. The present abundance of the nonthermal wimpzillas is, as expected,

independent of the cross section [6, 7], and one can easily verify that if there is some way

to create wimpzillas in the correct abundance to give 
X � 1, nonequilibrium during the

evolution of the universe is automatic.

The paper is organized as follows. In Section II we present some details of the simplest

hybrid ination model and discuss the allowed range of the various parameters. In Section

III we present our analytical results for wimpzilla production, making use of some general

results presented in the appendix. Section IV contains our numerical results. Finally, in

Section V we present our conclusions.
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II. THE HYBRID INFLATION MODEL

For our computation of wimpzilla production, we take the simplest hybrid ination

potential as suggested by Linde [15] [27]

V (�; �) =
1

4�

�
m2

� � ��2
�2

+
1

2
m2

��
2 +

1

2
g2�2�2 : (2)

This potential has a valley of minima at � = 0 for � > �c � m�=g. Most of ination occurs

while � is slowly rolling down from its initial value to �c.

During ination � has a minimum at � = 0 and its kinetic energy is quickly damped by

the Hubble expansion. Hence, classically in this naive picture, � remains at 0 for a long

time before it falls due to some in�nitesimal residual displacement of � and/or _� about

0 [28]. However, this picture is valid, strictly speaking, only when one neglects quantum

uctuations. Physically, what will occur is that the quantum uctuations will grow and the

long wavelength modes will condense such that di�erent regions of spacetime will behave as

if they had a classical scalar �eld value of � = �m�=
p
� with domain walls between the plus

and minus regions. (In the case that the scalar �eld is complex, a cosmic string will form

instead of a domain wall.) This phenomenon is sometime called spinodal decomposition.

A relevant observation for gravitational particle production is that the e�ective stress

caused by the �eld gradients will increase the pressure of the universe such that the Hubble

expansion will slow faster. One way to see this is to note that the energy conservation

equation

d
�
�a3

�
= �Pd(a3) (3)

tells us that

� = �i

�
ai
a

�3
� 1

a3

Z a

ai
Pd

�
a

ai

�3
; (4)

which implies that a positive increase in the pressure will lead to a faster decrease in the

energy density, causing a faster decrease in H. Of course, even if the universe contains

inhomogeneities due to these �eld gradients, one can average over the uctuation to account

for an e�ective energy density and pressure.

One way of accounting for quantum uctuations has been presented by Ref. [17]. There,

the canonical formalism is used to quantize the uctuations about a time dependent zero

mode ��(t): � = ��(t) + ��(x; t). They argue that the long wavelength modes of ��(x; t)
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condense such as to form an e�ectively homogeneous scalar �eld ���(t), whose energy con-

tribution to the stress energy tensor can dominate over the stress energy of the background

mode ��(t) such that the expansion rate _a=a is damped more quickly than one would naively

expect from accounting for only ��(t). This e�ectively homogeneous scalar �eld ���(t) has an

initial condition that is �xed by h��2(x; t)i in the background of ��(t). It is

h���2(t0)i1=2 � HI

2�
; (5)

where the exact numerical factor depends on the boundary condition of the quantum uctu-

ations (which cannot be zero due to canonical commutation relations), and HI is the Hubble

expansion rate during ination.

We will implement this result and simulate the condensation ��� and its fall by letting

� have a nonzero initial condition at the end of ination with a value of order HI=2� and

letting it fall, instead of having the condensation component fall. To achieve this, we add a

perturbation potential

VP (�; �) = BH3
I

 
� � m�p

�

!
exp

h
�C (�� �c)

2
i
: (6)

Then, by adjusting B and C we can simulate the condensate ��� by making �(t) roll to the

new minimum instead. We shall, however, not take into account the potential for ���(t) as

is done in Ref. [17]. In detail, if the potential for � is as given in Eq. (2), the potential in

which ��� falls would be

V (�; �) =
1

4�

�
m2

� � ���2
�2
+
1

2
m2

��
2+

1

2
g2�2��2+

1

2

�
�m2

� + g2�2 + 3���2
�
���2+

3�

4
���4; (7)

where �� = 0 in our case. Comparing this expression with the tree-level e�ective potential,

one �nds that the potential for � with a slight displacement from � = 0 achieves the

same dynamics as ���(t) if � is replaced with 3�. Hence, if we only consider the case

where � = 0 forever without the quantum uctuations, our simulated treatment of spinodal

decomposition will coincide with that of Ref. [17] with just the reinterpretation of �! 3�.

On the other hand, in reality, since � will never precisely be at zero forever even in the

nonrealistic absence of quantum uctuations, a better simulated treatment of the spinodal

decomposition requires further modi�cations of the potential along the lines of Eq. (7) with

�� 6= 0. Since we are primarily concerned with order of magnitude accuracy, and since this

approximation neglects classical wave scattering e�ects taken into account in Ref. [18], we

will not account for this e�ective change in the potential for �.
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Let us be more precise about the order of magnitude of B and C. To displace e�ectively

� by HI=2� at the end of ination, we must have

B � 107g2

�

�
m�

MP l

�2 1

ln[1 + g=
p
Cm�]2

; (8)

where we have used the COBE determination of curvature perturbations, giving rise to the

relationship [29]

m2
� �

g

�3=2
m5

�

3:5 � 10�5M3
P l

: (9)

Note that the precise value of B and C will not be important to the determination of the

Bogoliubov coe�cient as long as the perturbation potential causes � to fall. We have checked

this numerically as shown below in the case where we have set m� = 10�3MP l.

We would like to emphasize that while our treatment of spinodal decomposition is ade-

quate for the purposes at hand, it is far from complete. Since Ref. [18] argues that generically

hybrid ination ends after one oscillation, we cannot realistically probe the parameter space

in our model where more than one oscillation of the scalar �elds is important if we neglect the

important pressure-related e�ects due to condensation and classical-wave scattering. Even

for the one oscillation approximation, the e�ect of neglecting the pressure due to conden-

sation and classical-wave scattering underestimates particle production due to the fact that

the pressure e�ects increase the nonadiabticity of the expansion of spacetime. Hence, this

issue certainly deserves more investigation. We note that other related references include

Refs. [19, 20, 21, 22] and references therein.

The parameters in the potential in Eq. (2) are constrained by several considerations.

Constraints on the amplitude and the tilt of the curvature perturbation spectrum generated

during ination impose the following constraints on � and g [16]:

g

�3=2
m5

�

m2
�M

3
P l

� 3:5 � 10�5; (10)

and
�m2

�M
2
P l

�m4
�

<
� 0:25: (11)

The requirement that the cosmological constant term dominates during the inationary

regime above �c imposes a third constraint,

m2
� �

g2m2
�

�
: (12)

8



Note that the tilt of the curvature perturbation spectrum yields a constraint similar to the

condition that the � �eld evolution is slow roll; i.e.,

m2
�

m�MP l
�
s
3�

2�
: (13)

Also, note that the condition that the cosmological constant term dominates during the

inationary regime with � > �c also implies the \waterfall" condition (the condition that

the scalar �elds after � reaches �c roll to the new minima quickly compared to the expansion

rate).

With m� �xed, these constraints collectively determine a region of (g; �) parameter space,

outside of which is forbidden by the perturbation amplitude and tilt considerations. Yet

there is one other constraint that we have not discussed. As we have reviewed previously,

our model does not describe the evolution of the expansion rate of the universe accurately

beyond one oscillation of the scalar �elds after the end of ination. As we will see in the

next section, our relic density will depend upon an accurate modeling of the background

equation for at least one Hubble time at the end of ination. Hence, our model is valid only

in the regime in which no more than one oscillation takes place during one Hubble time.

Let us see how this constrains our parameter space.

The time scale for the scalar �eld oscillation is set by the mass matrix (in the (�; �) basis)

m2(t) =
1

2

0
B@ �m2

� + g2�2 + 3��2 2g2��

2g2�� m2
� + g2�2;

1
CA (14)

which for two extreme values of �, � = m�=
p
� and � = 0, becomes

m2(� = m�=
p
�; � = 0) =

1

2

0
B@ 2m2

� 0

0 m2
� + g2m2

�=�

1
CA (15)

and

m2(� = 0; �) =
1

2

0
B@ �m2

� + g2�2 0

0 m2
�

1
CA : (16)

We see that although the main oscillation frequency scale is m�, since � can be as large as

�c � m�=g and since typically m� � m�, the actual frequency scale for the oscillation will

be a weighted time average,whose value can be signi�cantly lower than m�. Let us call this

weighted average frequency scale m�f , where f < 1 is some constant (typically f is of order

9



10�3). As far as the Hubble expansion rate at the end of ination is concerned, in the model

we study it is given by

HI �
vuut2�

3�

m4
�

M2
P l

= 1:8� 1014
�

m�

10�3MP l

�2
 
10�2

�

!1=2

GeV: (17)

Then, the ratio

HI

fm�
=

s
2�

3�

m�

fMP l
(18)

implies that unless m� is within a factor of f
p
� of MP l, many oscillations will occur during

the one Hubble time when particle production occurs. Hence, the constraint on our param-

eter space due to limitations of our background �eld model is that m� be as close to as MP l

as possible. Since Planckian energy densities invalidate semi-classical gravitational physics,

we will set m� at the GUT scale,

m� = 10�3MP l; (19)

assuming that there is some physics separating the GUT scale and the quantum gravity

scale. Hence, the following interesting set of parameters (g = 0:01, � = 1, m� = 10�7MP l,

m� � 652 GeV) which satisfy all the constraints and give a mass scales in the intermediate

scale (1012 GeV) and the electroweak scale, cannot be analyzed in our model because in

this case, HI=(fm�) is too small. In fact, even for the single oscillation case, there may be

some other damping factor for _� and _� which a�ects the magnitude of _H, which of course is

crucial for the particle production calculation (as we will explain further in the next section).

Hence, we consider even the numerical calculation results in this article to be only order of

magnitude accurate.

Before we map out the parameter space for which our calculation explicitly is valid, we

would like to show that having m� close to MP l forces the scalar �elds to have Planck scale

vevs. This is noteworthy. Because of the possible sensitivity to unknown Planck-suppressed

operators, scenarios in which the inaton attains a Planck scale vev may be unattractive

[25].

We can model the dynamics of � before reaching �c as the evolution of a non-interacting

inaton in a de Sitter background:

��+ 3H _� +m2
�� = 0: (20)
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For the inaton �eld to be slow rolling (overdamped) to the critical value �c from some

initial value of �(t = 0) > �c, we must have m�=H � 1. In that case, taking the least

damped solution, we have

� = �c exp

"
1

3

�
m�

HI

�2

HI (tc � t)

#
: (21)

Note that since �c = m�=g, having m� close to the Planck scale means that �c will be

close to the Planck scale. We can be more quantitative by seeing what the constraint

�(t = 0) < cMP l with c of order unity implies. Since a(t)=a(t = 0) = exp(HI t), to have 60

e-folds, we must have �(t = 0) > �c exp [60 (m�=HI)
2=3)]. This implies

m�MP l

m2
�

s
30�

�
<

s
ln
�
cgMP l

m�

�
; (22)

where we have taken �c = m�=g. There are instances when this constraint becomes inde-

pendent of other constraints. For example, g = 10�4; � = 1; m� = 10�4MP l; m� = 1:7�109

GeV satis�es all other conditions but this one with c = 1. We will neglect this \small �eld"

constraint since this is not as fundamental as other constraints.

In summary, the parameter space that we will explore will be

3 � 10�5

p
�

� g <
� 3 � 10�2

p
� (23)

The parameter space is shown explicitly in Fig. 1.

III. ANALYTIC ESTIMATE OF PARTICLE PRODUCTION

In the appendix we present a general method of estimating particle production from

strong gravitational �elds. In this section we apply the results from the appendix to the

hybrid inationary scenario.

We show in the appendix that an estimate of particle production requires an estimate of

the background equation solutions. To start o�, let us examine the time variation of _H=H.

After ination as the scalar �elds oscillate about their minima, _H=H oscillates. For the

envelope of the function describing the oscillations we have

_H = � 4�

M2
P l

( _�2 + _�2) � � 4�

M2
P l

� (24)
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FIG. 1: The �-g parameter space in hybrid ination. The shaded region corresponds to values

of the parameters allowed by Eqs. (10 - 12). The lower limit on this region is dashed because it

represents the "�" limit in Eq. (23).

and the Friedmann equation,

H2 =
8�

3M2
P l

�: (25)

From these, we �nd a following general relationship after the end of ination

_H
���
envelope

� H2: (26)

In fact, after the �rst oscillation the scalar �elds will undergo damped oscillation about their

new minimum, and the scale factor during that time varies in general as

a(t) = ae

�
t

te

��
(27)

where in the hybrid inationary case, � � 2=3 (which is a typical result of massive scalar

�eld oscillation). In reality, this � will have corrections coming from the phase transition

physics.

Before ination ends, the scale factor will be taken to evolve as

a(t) = ae exp [HI (t� te)] (28)

with HI given by Eq. (17).
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Let us now follow the procedure outlined in the appendix to calculate nX(te). First,

consider the contribution to modes that are nonrelativistic at the end of ination, Ia(k) +

Ib(k), given in Eq. (A8). Assuming HI is a constant and a(t) evolves as Eq. (28),we �nd

Ia(k) =
1

4

M2
X

k2
a2e
h
e2HI(t2�te) � e2HI(t1�te))

i
; (29)

where, from the Appendix t1 and t2, are de�ned by

kphysical(t1) =
k

ae

ae
a(t1)

= 2HI

kphysical(t2) =
k

ae

ae
a(t2)

= MX : (30)

Hence, we obtain for Ia(k) the result

Ia(k) =
1

4

"
1�

�
MX

2H

�2
#
: (31)

Next, we calculate the nonrelativistic contribution in the period after ination, Ib(k), also

de�ned in Eq. (A8). Since t4i and t3i+1 are close together, (t3i+1�t4i � 1=H) forMX=H � 1,

and since we are concerned with order of magnitudes, we can just integrate from t31 to t4N

instead of summing over each i. Since the nonadiabatic region begins at around te, we take

t31 � te. The �nal integration time, t4N , is de�ned by the condition j _H=Hj > MX . In the

period after ination we will take a(t) / t� as in Eq. (27), so H = �=t and _H=H = 1=t.

Hence, we have

Ib(k) =
1

2

Z t4N

te
H(t) dt =

�

2
ln
�
t4N
te

�
=

�

2
ln
�

HI

MX�

�
: (32)

The calculation of the production of modes relativistic at the end of ination, Ja(k)+Jb(k)

given in Eq. (A9), is a bit trickier. First of all, consider the contribution Ja(k):

Ja(k) =
1

2

Z t6

t5
dt

a2(t)

q2
H(t); (33)

where t5 is the time during ination when kphysical(t5) = 2HI . During ination a(t) =

ae exp [HI(t� te)], and kphysical(t5) = 2HI gives

k

a(t5)
= kae exp [�HI(t5 � te)] = 2HI : (34)

The time t6 is the smallest of the times after ination when kphysical(t6) = 2H or

kphysical(t6) =MX . In the period after ination, a(t) = (t=te)� and H = �=t, so

t6
te

= MIN

2
4 q=ae

2HI=MX

!1=(��1)

;
�
q

ae

�1=�
3
5 ; (35)
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where the �rst term is kphysical(t6) = 2H and the second term is kphysical(t6) =MX .

Since t6 will occur after ination, Ja(k) divides into the parts before and after ination:

Ja(k) =
1

2

HI

q2

Z te

t5
dt a2(t) +

1

2

1

q2

Z t6

te
dt a2(t)H(t)

=
1

4

"
1 �

�
MX

2HI

�2
#
�

"�
2HI

MX

��
� q

ae

#

+
1

4

2
4(2HI=MX )

2�=(1��)

(q=ae)2=(1��)
�
�
MX

2HI

�2
3
5 �

"
q

ae
�
�
2HI

MX

��#
�
�
2HI

MX
� q

ae

�
: (36)

where � is a step function. The second theta function in the second term ensures that

t6=te > 1. Note that Ja matches Ia in the limit q=ae ! 1.

To calculate Jb, we follow the similar procedure as we did for Ib, and integrate from

t71 = t6 to t8N = t4N . Note that this is nonzero only when t71 � t8N . Hence, we have

Jb =
�
�

2
ln
�

HI

MX�

�
� 1

2
ln
�
q

ae

��
�

"�
HI

�MX

��
� q

ae

#
�

"�
2HI

MX

��
� q

ae

#
: (37)

The �rst � comes from t71 < t8N and the second � comes from using t71 = t6 = te (q=ae)
1=�

(see Eq. 35). Note that t = te (q=ae)
1=� is the time at which the momentum becomes

nonrelativistic, and it is precisely this regime during which Jb is calculated. If q=ae >

(2HI=MX)
�, then the momentum becomes relativistic and there is no extra contribution

to Jb. From now on we will assume that � � 1=2, in which case the second � function is

irrelevant.

Writing

�q = (Ia + Ib) �(1� q=ae + �) + (Ja + Jb) �(q=ae � 1) (38)

where the � indicates that we take the �rst term when q=ae = 1, we can �nally obtain the

number density nX(te) through

nX(te) =
M3

X

2�2

Z
d
�
q

ae

��
q

ae

�2

j�qj2

=
H3

I z
3

2�2

2
4 1

48

 
1 � z2

4

!2

+
�2

12
ln2(�z) +A1 +A2 +B1

3
5 ; (39)

where z � MX=HI and � = 2=3 in our case. The �rst two terms are the nonrelativistic

contribution, and the relativistic contributions Ai and B1 are

A1 =
(z2 � 4)2

768

"�
2

z

�3�

� 1

#
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=
0:08

z2
� 0:06 � 0:02z2 + 0:001z4 (for � = 2=3); (40)

A2 =
1

768(9�2 � 1)

n
64z +

h
�24(1 + 3�)(1 � �)z2 + (1 + 3�)(1 � 3�)z4

�48(1 � 3�)(1 � �)]
�
2

z

�3�
)

=
0:03

z2
� 0:04 + 0:03z � 0:005z2 (for � = 2=3); (41)

and

B1 =
1

54

"�
1

�z

�3�

� 1

#
+
� ln(z)

18
� �2 ln(�) ln(z)

6
� �2 ln2(z)

12
+
� ln(�)

18
� �2 ln2(�)

12

=
0:04

z2
� 0:04 + 0:07 ln(z)� 0:04 ln2(z) (for � = 2=3): (42)

We have neglected cross terms as well since we have neglected any phase information

(i.e., if �q = Ja + Jb, then j�qj2 was taken to be J2
a + J2

b , which should give a lower bound

and the correct order of magnitude since both Ja and Jb are positive). The important result

is that for small z, one can approximate

1

48

 
1 � z2

4

!2

+
�2

12
ln2(�z) +A1 +A2 +B1 � 0:15

z2
: (43)

In the z < 1 limit, the largest contribution comes from the Ja(k) and Jb(k) terms. This

corresponds to production of modes that are relativistic at the end of ination, with approx-

imately equal contributions to the �nal value of j�j2 coming just before and just after the

end of ination. We see how the exact behavior of _H=H after ination is important.

Finally, putting everything together, in the limit z = MX=HI � 1:


Xh
2 � 
Rh

2
�
TRH
T0

�
8�

3

znX(te)

M2
P lHI

�
�

MX

1011GeV

�2 � TRH
109GeV

�
(general result)

� 2 � 104
�

TRH
109GeV

��
m�

10�3MP l

�4 z2

�
(hybrid ination); (44)

where the expression is valid only if MX < HI = 1:8 � 1014(m�=10�3MP l)2(10�2=�)1=2GeV.

As shown in the next section, the numerical results corroborate this analytic estimate.

Note that with MX � 1013GeV and TRH � 104GeV, we have 
Xh
2 of order 10�1.

Characteristic of gravitational production, it is possible to produce dark matter many orders

of magnitude in excess of TRH.
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We have left the � dependence in most of the expressions to indicate that the mass

scaling is sensitive to the fact that the scalar �elds enter a regime just after ination in

which the scale factor evolves as a matter-dominated universe. The physics of the spinodal

decomposition is expected to change this e�ective �, but one would generically expect �

somewhere between 1=2 and 2=3, which means that the number density of particles pro-

duced will roughly remain the same. Hence, even though all of our calculations have some

sensitivity to more than one oscillations (as can be seen in our estimation procedure), as

long as the scale factor enters a scaling regime at the end of ination, our results will give

the correct order of magnitude.

IV. NUMERICAL CALCULATION OF PARTICLE PRODUCTION

In this section we describe the results of our numerical analysis of gravitational particle

production in the hybrid ination model. The basic hybrid potential was given in Eq. (2).

As discussed above, the end of ination is triggered by some perturbation, which we model

by adding to the basic potential a \perturbed" potential given in Eq. (6). The �rst issue is

whether our results are sensitive either to the nature of the end of ination or the way we

model it.

A straightforward exercise is to investigate the sensitivity of particle production to the

parameters B and C in the perturbed potential we use to trigger the end of ination. In

Fig. 2 we show the time evolution of the Bogoliubov coe�cient for di�erent choices of B

and C. As shown in the �gure, our results are insensitive to B and C as long as they are

chosen so as to make VP negligible outside a very small region around � = �c. Note that we

also set m� = 10�3MP l for all the numerical work.

The fact that the �nal results are insensitive to the exact values of B and C suggests

(but of course does not guarantee) that gravitational particle production in hybrid ination

will be independent of the mechanism that triggers the end of ination.

The evolution of the background �elds � and � determine the expansion rate and the

change in the expansion rate. Figure 3 is an example of the evolution of the two �elds in

hybrid ination. For the parameters of this model (g = 0:01, � = 1), the critical value of �

is �c = 0:1MP l. An instability in the trigger �eld � (driven by the \perturbed" potential)

causes � and � to evolve rapidly to their minima (� = 0, j�j = m�=
p
� = 1) once � < �c.
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FIG. 2: The absolute square of the Bogoliubov coe�cient as a function of time for several

di�erent values of B and C (B is dimensionless and C is in units of M2
P l.) We have g = 0:01,

� = 1, MX = 0:1H0, and k = 0:1aiH0. The lines correspond to the deformation parameters

(B;C) given by (1; 109); (103; 107); (105; 103); (105; 105); (105; 107); (105; 109). The lines are hard

to distinguish on this scale and asymptotically approach within 10% of each other.

FIG. 3: An example of the evolution of the inaton �eld � (solid) and � (dashed) as a function

of time at the end of hybrid ination. The parameters chosen were g = 0:01 and � = 1.
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FIG. 4: The gravitational production of particles during hybrid ination as a function of �, with

g set to 0:001. The curves correspond to � as follows: solid, � = 0:001; dots, � = 0:01; dashes,

� = 0:1; dash-dot, � = 1. The magnitude of 
Xh
2(TRH=10

9GeV)�1 scales roughly as ��1.

FIG. 5: The gravitational production of particles during hybrid ination as a function of g, with

� set to 1. The curves correspond to g as follows: solid, g = 1 (note that this is outside the allowed

region of g; � parameter space); dots, g = 0:01; and dashes, g = 0:001.
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FIG. 6: gravitational production of particles during natural ination, with � = 10�3MP l and

f� = 0:6MP l.

To calculate the relic density of stable particles produced gravitationally, we integrated

the background and X-particle mode equations for several di�erent points within the allowed

regions of parameters shown in Fig. 1, as well as for � = g = 1, which is well outside it. Our

results are summarized in Figs. 4 and 5.

All the curves look similar in form to the mass spectrum for chaotic ination with a

potential V (�) � m2
��

2. The value of 
Xh
2 increases with z = MX=HI for z < 1, then

decreases exponentially for z > 1. The reason for this behavior is discussed in this paper for

the small-z region, and in [24] in the large-z limit.

The numerical results are in qualitative agreement with the result of Eq. (44).

As another example of a single-�eld model, in Fig. 6, we show the mass spectrum for

natural ination [23]. In natural ination the potential is usually chosen to be

V (�) = �4
h
1� cos

�
�=
p
2f�

�i
: (45)

Normalizing the parameters to produce the observed temperature uctuations, a reasonable

choice of parameters is � = 10�3MP l and f� = 0:6MP l. With these choices, HI = 5:1 �
10�7MP l.

As in the hybrid ination case, in the low-z limit 
Xh
2 / M2

X . Again, the numerical
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results are reasonably represented by 
Xh
2 � (MX=10

11GeV)2(TRH=10
9GeV).

V. CONCLUSIONS

The expansion rate of the universe during ination, HI , may signal a new mass scale in

physics. The particle spectrum of this new mass scale is completely unknown. There may

be no particles with this new mass scale; an example of such a model is �4 chaotic ination.

There may be only one particle with this mass scale; for example, the inaton mass in �2

chaotic ination. Nevertheless, it is very reasonable that one might expect a rich spectrum

of particles of this mass scale. If this is the case, there may be nearly stable particles of this

mass scale [26]. Independently of the coupling of the stable particle, they will be produced

as a result of the expansion of the universe acting on vacuum quantum uctuations. It was

shown in Refs. [6, 7, 14] that such particles would be excellent candidates for dark matter.

Since the dark-matter particle would have a much larger mass than usual thermal wimps,

they have been named wimpzillas.

The wimpzilla scenario for dark matter seems to be quite robust. The wimpzilla may

be minimally coupled or conformally coupled, it may be a boson or a fermion, it may couple

to the inaton or may be uncoupled.

The sensitivity of wimpzilla production to the ination model is one of the subjects

of this paper. Previous calculations have employed a chaotic ination model. Here, we

extend our studies on wimpzilla production to hybrid models and natural-ination models.

We have also developed analytic techniques that should provide reasonable estimates for

wimpzilla production in the limit that MX < HI .

The general picture for wimpzilla production now emerges, and it seems to be rela-

tively insensitive to the ination model. The characteristic expansion rate during ina-

tion, HI , controls the maximum mass that e�ciently can be produced. In all ination

models with continuous _H, the production of particles with mass larger than HI is expo-

nentially suppressed. For particles of mass smaller than HI , the contribution to 
Xh
2 is

(MX=1011GeV)2(TRH=109GeV).

This last expression for 
Xh
2 well illustrates that wimpzilla masses much in excess

of the reheat temperature may be dark matter. For instance, if TRH = 104GeV, then

MX = 1013GeV would give 
Xh
2 in the desirable range.
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While interesting behavior after ination like preheating or spinodal decomposition in the

case of hybrid ination might change the results, we expect the order of magnitude estimate

to be correct, and for it to be an underestimate of wimpzilla production.
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APPENDIX A: ANALYTIC DETERMINATION OF PARTICLE PRODUC-

TION

Consider a minimally coupled scalar �eld with mass MX . The equation of motion for the

�eld is

�X + 3H _X � 1

a2
r2X +M2

XX = 0; (A1)

where H is the expansion rate. The scalar �eld may be expressed in terms of Fourier modes

Xk = hk=a (a is the scale factor) as

X =
Z

d3k

(2�)3=2a

h
ake

i~k�~xhk(t) + ayke
�i~k�~xh�k(t)

i
; (A2)

with the usual normalization condition of the creation and annihilation operators,
h
a~k; a

y
~l

i
=

�3(~k �~l), the mode functions hk satis�es the equation

�hk +H _hk +

2
4�H2 � �a

a
+

 
k

a

!2

+M2
X

3
5hk = 0: (A3)

In terms of Bogoliubov coe�cients �k and �k, the mode functions can be written as

hk =
�kp
2!k

exp
�
�i
Z
!k a

�1(t) dt
�
+

�kp
2!k

exp
�
�i
Z
!k a

�1(t) dt
�
; (A4)

where !2
k = k2 +M2

Xa
2. Solving for the mode functions is equivalent to solving the system

_�k =
_!k

2!k
exp

�
2i
Z
!k a

�1(t) dt
�
�k

_�k =
_!k

2!k
exp

�
2i
Z
!k a

�1(t) dt
�
�k: (A5)
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The gravitational production of particles can be expressed in terms of the Bogoliubov coef-

�cient �k as

nX =
1

2�2a3

Z 1

0
dk k2 j�kj2 = M3

X

2�2a3

Z 1

0
dq q2 j�qj2 ; (A6)

where q � k=MX = kphysicala=MX with k the comoving momentum and kphysical = k=a

the physical momentum.

The Bogoliubov coe�cient to leading adiabatic order can be expressed as (see Ref. [24]

and references therein)

�q(t) �
Z t

�1
dt0

1

2

"
H(t0)

1 + q2=a2(t0)

#
exp

 
�2iMX

Z t0

�1
dt00
q
1 + q2=a2(t00)

!
: (A7)

This formula breaks down when j�j is of order unity (which may occur in our scenario), but

let us use it to estimate the order of magnitude scales.

The magnitude of �q depends on the magnitude of the argument of the exponential in

Eq. (A7). If the argument is of order unity or greater, then the oscillatory behavior will

damp j�qj. Thus, the �nal magnitude of �q depends on the size of q=a(t). This leads to a

natural division of particle production into the cases where q=a(t) = kphysical=MX is larger

or smaller than unity. We will consider the two cases in turn.

First consider production of nonrelativistic particles: q=a(t) = kphysical=MX < 1. This

case further splits into two subclasses.

MX < j _H=Hj: In this case, the oscillations are not important, and one simply integrates

H(t) to the point that it becomes negligible.

MX > j _H=Hj: In this case, the oscillations cancel most of the contribution to the inte-

grand.

Now consider production of relativistic particles: q=a(t) = kphysical=MX > 1. In this

case, the frequency of the oscillations just becomes the physical momentum. Again, this

case divides into two subclasses.

kphysical < j _A=Aj, where A(t) � H(t)= [1 + q2=a2(t)]: Since q=a(t) > 1, this is equivalent

to kphysical <
���2H + _H=H

���. In this case the oscillations are not important, and one simply

integrates H(t)=[q2=a2(t)] to the point that it becomes negligible.

kphysical >
���2H + _H=H

���: In this case the oscillations cancel most of the contribution to

the integral.

We will neglect the marginal case of q=a = 1, since this will be roughly accounted for in

the estimates of the above cases. The di�erent cases and subcases are given in Table I.
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TABLE I: This table summarizes the di�erent cases in the analytic calculation of gravitational

production of particles.

relativistic/nonrelativistic subcase oscillations �

nonrelativistic MX < j _H=H j none
R
dtH(t)

nonrelativistic MX > j _H=H j many damped

relativistic kphysical <
���2H + _H=H

��� none
R
dtH(t) [q=a(t)]�2

relativistic kphysical >
���2H + _H=H

��� many damped

A key to developing analytic approximations is the behavior of H and j _H=Hj. During

ination, H is roughly constant (denoted as HI) and _H=H � HI . After ination, _H=H is

negative, and oscillates (with decreasing amplitude) between zero and approximately �H.

This behavior is illustrated in Fig. 7 in the simple chaotic ination scenario. During the

matter-dominated (MD) phase and the radiation-dominated (RD) phase, _H=H = �3H and

_H=H = �4H, respectively, so
���2H + _H=H

��� =[1 (MD) or 2 (RD)]�H
Since _H=H ' 0 during ination, from Table I we see that production of nonrelativistic

particles is suppressed during ination and production of relativistic particles during ination

is suppressed if kphysical � H.

Let us now turn to the estimate of the number density. The particular ination model,

together with the behavior of the expansion rate immediately after ination, will determine

the e�ciency of gravitational particle production. Here we will give a recipe that can be

adapted for several models.

We are mainly concerned with the case when MX=HI < 1. (Particle production is

exponentially suppressed for MX=HI > 1: this case was addressed in detail in Ref. [24].)

The result will depend on whether the particle was relativistic or nonrelativistic at the end

of ination.

First, consider momentum modes where the particle was nonrelativistic at the end of

ination, kphysical(te) � MX. The calculation divides into production during ination

and post-ination production. During ination, the growth in j�kj is only when MX <

kphysical < 2HI . After ination, the particle is nonrelativistic, and growth occurs during

periods when MX < _H=H. Using the results summarized in Table I (recall that kphysical =
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FIG. 7: The behavior of _H=H and the inaton �eld at the end of ination in a simple chaotic

ination model (V �M2
��

2). Notice the oscillatory behavior of _H=H after ination.

k=a = MXq=a),

�k(kphysical(te) < MX) ' 1

2

Z t1<t2�te

t1
dt

H(t)

q2=a2(t)
+
X
i

1

2

Z t4i

t3i

dt H(t)

� Ia + Ib: (A8)

Here, Ia is the growth during ination in the interval ft1; t2g where the times are de�ned

such that kphysical(t1) = 2HI and kphysical(t2) = MX . Ib is the growth after ination in

the intervals ft3i; t4ig when MX � _H=H.

Note that we have neglected any phase information between various contributions. These

interfererence terms should be important in only some special cases and not generically

because in most cases only one term will dominate.

Now, consider momentummodes where the particle was relativistic at the end of ination,

kphysical(te) � MX. Since the mode was relativistic at the end of ination, it must have

been relativistic throughout ination. From Table I we see that during ination, the growth

in the amplitude of �k only occur when 2HI > kphysical. After ination, the mode will

remain relativistic so long as kphysical > MX and it will continue to grow so long as

2H > kphysical. After the mode becomes nonrelativistic (kphysical < MX) it will grow

only during periods when MX < _H=H. Using the results summarized in Table I (recall that

24



kphysical = k=a = MXq=a),

�k(kphysical(te) > MX) ' 1

2

Z t6

t5
dt

H(t)

q2=a2(t)
+
X
i

1

2

Z t8i

t7i

dt H(t)

� Ja + Jb: (A9)

Here, Ja is the growth during and (possibly) after ination in the interval ft5; t6g where the
times are de�ned such that kphysical(t5) = 2HI and t6 is the smallest of times after ination

when either kphysical(t6) = 2H or kphysical(t6) = MX . Ib is the growth after ination in

the intervals ft7i; t8ig when the mode is nonrelativistic and MX � _H=H.

Once again, we have neglected any phase information between various contributions for

the reason discussed above.

To use these facts to estimate the relic density produce, one must �rst obtain a reasonable

estimate of a(t) from the background equations.
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